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Random heteropolymer dynamics
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We study the Langevin dynamics of the standard random heteropolymer model by mapping the problem to
a supersymmetric field theory using the Martin-Siggia-Rose formalism. The resulting model is solved nonper-
turbatively employing a Gaussian variational approach. In constructing the solution, we assume that the chain
is very long and impose the translational invariance which is expected to be present in the bulk of the globule
by averaging over the center of mass coordinate. In this way we derive equations of motion for the correlation
and response functionsC(t,t8) andR(t,t8). The order parameters are extracted from the asymptotic behavior
of these functions. We find a dynamical phase diagram with frozen~glassy! and melted~ergodic! phases. In the
glassy phase the system fails to reach equilibrium and exhibits aging of the type found inp-spin glasses.
Within the approximations used in this study, the random heteropolymer model can be mapped to the problem
of a manifold in a random potential with power law correlations.
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I. INTRODUCTION

Disordered systems can be extremely hard to solve, as
example of spin glasses shows@1#. It took enormous effort to
understand the physics of infinite-dimensional spin glas
while that of finite-dimensional spin glasses is still debat
Certainly, the complexity of the spin glass energy landsc
is the major obstacle one has to deal with, and there are o
systems sharing this feature: standard examples are pro
@2# and manifolds in random potentials@3#.

The study of simplified random heteropolymer mod
may provide a useful first step toward understanding
physics of proteins. Here, a central question is whether
trapping of the protein in a valley of the rough energy lan
scape can hinder, or perhaps even prevent, folding into
native state. Something related to this scenario has actu
been observed in some real proteins: the protein can
heated and then, upon recooling, misfold and never be
to find its native state@4,5#.

Here, we analyze the kind of dynamical trapping that c
occur in the standard model of a random heteropolym
@6,7#. So far, in addition to numerical simulations, two an
lytic approaches have been used to solve such models: e
librium analysis employing the replica technique~see, e.g.,
Refs.@7–13#! and dynamical studies using Langevin dyna
ics @14–21#.

In the equilibrium approach, one studies the properties
Gibbs equilibrium. Even the simplest kind of random h
eropolymer model can be approached analytically only
approximate ways. In Refs.@7–13# a model was analyzed
with replica variational approximations, which predict ergo
icity breaking at low temperature, giving one-step repl
symmetry breaking~1RSB! for d.2 and continuous replica
symmetry breaking ford,2. Thus, in three dimension
~3D!, below the freezing temperature, the ergodic com
nents lie far apart from each other, and have the same in
state overlapq0. Given the intrinsic one-dimensional natu
of the polymer, it has been argued that RSB could be
artifact of the variational approximation@22#. We believe,
1063-651X/2001/64~5!/051910~11!/$20.00 64 0519
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however, that even in this eventuality, implying that a sing
native state dominates the thermodynamics, RSB in
variational approximation is a signal of a complex ener
landscape, which can lead to slow dynamics, with o
equilibrium behavior on long time scales.

Models exhibiting 1RSB~such as the simple random he
eropolymer mentioned above, thep-spin glass, or a manifold
in a random potential! have been found to have differen
dynamic and static phase diagrams, with a dynamical ene
density higher then the one found at equilibrium. This rais
the intriguing possibility that, for a suitable range of tem
peratures and times, a heteropolymer might find itself
namically trapped in a local state~as in the scenario de
scribed above!, while the equilibrium statistical mechanic
might give no clue that this was happening. Such trapp
would thus be an intrinsically nonequilibrium effect, and
dynamical theory is required to describe it.

For models with this feature, the solutions exhibit a brea
down of time-translation invariance~the correlation func-
tions depend on the time since the system was quenched
the glassy state! and a breakdown of the fluctuation
dissipation relation~which is a fundamental characteristic o
Gibbs equilibrium!. Together, these properties of the d
namical glassy phase go under the name ‘‘aging,’’ and i
one of our goals here to examine the possibility of aging
heteropolymers.

In this paper we consider the simple random heteropo
mer model with Langevin dynamics~as in Refs.@16,21#!.
The equations of motion are constructed in such a way
the Gibbs distribution is the stationary solution of the d
namics. This type of dynamical approach was used succ
fully in spin glass models.

To derive closed equations of motion for correlation a
response functions we resort to a Gaussian variational an
similar to the one used at equilibrium. The same appro
has been used to study the problem of a manifold in a r
dom potential, for both statics@23,24# and dynamics@25,26#.
In related dynamical work on a random heteropolym
model@16# and@21#, the slightly different approach of mod
©2001 The American Physical Society10-1
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coupling theory is used. Our approach gives results fu
coherent with the ones obtained there, although the deta
form of the phase diagram differs, due to the different nat
of the approximation.

The analysis of the variational equations indicates that
expected from static treatments, the random heteropoly
model exhibits spontaneous breaking of ergodicity in
glassy phase. All these states are equally distant from e
other; they have the same interstate overlap~naturally, the
self-overlap is different!. We also discuss the nature of th
transition from the frozen~glassy! to the melted~ergodic!
phase. Furthermore, we find that, within the Gaussian va
tional approximation that we employ, the random h
eropolymer model can be mapped onto the problem o
manifold in a random potential with power law correlation

The paper is organized as follows. Section II briefly d
scribes the Langevin model. In Sec. III a mapping to a
persymmetric~SUSY! field theory is made. The resultin
action can be simplified by assuming a very long chain. T
is discussed in Sec. IV. Dynamical equations in SUSY no
tion, given in Sec. VII, are obtained via the variationalAn-
satz discussed in Secs. V and VI. Also, in Sec. VII, th
connection of the random heteropolymer model to the pr
lem of a manifold in a random potential will be comment
upon. After disentangling the SUSY notation, one obta
dynamical equations for correlation and response functi
~Sec. VIII!. An analyticalAnsatzfor solving these equation
is introduced in Sec. IX, and the solution is obtained in S
X. Section XI discusses the ergodic phase, while in Sec.
the spin glass phase is analyzed. Technicalities neede
construct the full phase diagram are given in Sec. XIII.

II. THE MODEL

The model is defined as follows. The Langevin dynam
is assumed to be governed by the HamiltonianH@x#,

]x~s,t !/]t52]H@x#/]x~s,t !1h~s,t !, ~1!

wherex(s,t) is the position of chain beads at time t. Beads
are numbered continuously froms50 to s5N. h(s,t) is
Gaussian noise:

^h~s,t !h~s8,t8!&T52d~s2s8!d~ t2t8!T ~2!

due to contact with a heat bath at temperatureT. The Hamil-
tonianH@x#5H0@x#1Hrand@x# contains a deterministic par
H0@x# and a random partHrand@x#. TheH0@x# is defined as

H0@x#5
T

2E0

N

ds$@]x~s,t !/]s#21mx~s,t !2% ~3!

and describes the elastic properties of the chain and a
finement potential that fixes the density of the protein. T
random partHrand describes heterogeneity of the interactio
between the beads,

Hrand@x#5
1

2E0

N

dsds8Bs,s8V„x~s,t !2x~s8,t !…. ~4!
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Bs,s8 is quenched Gaussian noise with varianceB2:

^Bs,s8
2 &B5B2, s.s8. ~5!

V(Dx) is a short-range potential, and for simplicity we ta
it to have a Gaussian form, as in Ref.@16#:

V~Dx!5S 1

2ps D d/2

e2(Dx)2/2s. ~6!

d is the dimensionality of the system, ands parametrizes the
range of the potential. Large~small! s results in a long-
~short-!range potential. In particular, fors→0, V(Dx)
→d(Dx), and we recover the potential used in@21#. Here
and in the followingDx denotes the bead-to-bead distanc
Dx5x(s,t)2x(s8,t) for a pair of beadss,s8.

This model admits a stationary solution characterized b
Gibbs distribution. The equilibrium partition function for thi
solution is given by

Z5E Dx exp2
1

2 S E
0

N

ds$@]x~s!/]s#21mx~s!2%

2
b

2E0

N

dsds8Bs,s8V„x~s!2x~s8!…D . ~7!

T in Eq. ~3! ensures that the chain constraint and quadr
confinement are temperature independent.~That is, the elas-
ticity is purely entropic in origin.! The same convention wa
used in Ref.@16#. This differs slightly from the work in Ref.
@21#, where the elastic term had a factorb in front of it. Our
choice ensures that for high temperatures the random
eropolymer behaves as a Gaussian random coil. Also,
very low temperatures, the random part of the interact
with b in front dominates (b→`; the elastic and confine
ment terms become negligible!. Thus, in principle, forb
5`, Z in Eq. ~7! is dominated by minima of
*dsds8Bs,s8V„x(s)2x(s8)…. Furthermore, in this limit there
is nothing that would control the spatial spread of tho
minima, and^x2(s,t)&T diverges for very low temperatures
@This happens only whenm is held fixed. If it is adjusted
appropriately, one can keep^x2(s,t)&T fixed instead. In this
paper, however, we will be concerned with finite-T phase
transitions, not the low-T limit, so we will work with
fixed m.#

III. MAPPING TO THE FIELD THEORY

Using the standard Martin-Siggia-Rose formalism@27#,
the dynamical average of any observable can be calculate

^O@x,x̃#&T5E DxDx̃DDjD j̄O~x,x̃!e2S[x,x̃,j,j̄] , ~8!

with the following dynamical action:
0-2
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S@x,x̃,j,j̄ #5E dtdsF2Tx̃~s,t !21 x̃~s,t !

3S ]

]t
x~s,t !1

]H@x#

]x~s,t ! D G
2E dtdsj̄~s,t !

]

]t
j~s,t !

1E dtdsds8j̄~s,t !
]2H@x#

]x~s,t !]x~s8,t !
j~s8,t !.

~9!

x̃,j,j̄ are auxiliary fields that appear in the formalism. T
compactify the notation we introduce the superfieldF:

F~s,t1 ,u1 ,ū1!5x~s,t1!1 j̄~s,t1!u11 ū1j~s,t1!

1 ū1u1x̃~s,t1!, ~10!

where u and ū are Grassmann~anticommuting! variables.
For X,X8P$u,ū,u8,ū8%, $X,X8%50, and*dXX51, the rest
of the integrals being zero. In the following, for practic
reasons, the more compact notationF(s,1)
[F(s,t1 ,u1 ,ū1) will be used. Also, the integral symbo
*du1dū1dt1 will be denoted by*d1.

In supersymmetric notation Eqs.~8! and~9! translate into

^O@F#&T5E DFO@F#e2S[F] , ~11!

S@F#5S0@F#1Srand@F#, ~12!

respectively, where

S0@F#51/2E dsd1ds8d2F~s,1!K12
ss8F~s82!, ~13!

Srand@F#51/2E d1dsds8Bs,s8V„F~s,1!2F~s8,1!…,

~14!

and

K12
ss8[d12dss8K1

s , K1
s5T@m2~]/]s!2#2D1

(2) , ~15!

D1
(2)52T

]2

]u1]ū1

12u1

]2

]u1]t1
2

]

]t1
. ~16!

As noticed by De Dominicis@28# the expression in Eq.~11!
is already normalized, so the average over the quenched
dom interactionsBs,s8 can be done directly on Eq.~11!:

Š^A@F#&T‹B5E DFA@F#e2(S0[F] 1S1[F]) , ~17!

where exp(2S1@F#)[^exp(2Srand@F#)&B . The average ove
Bs,s8 can be done easily, leading to
05191
n-

S1@F#52B2/4E dsds8F E d1V„F~s,1!2F~s8,1!…G2

.

~18!

The dynamical actionS5S01S1 closely resembles the ef
fective Hamiltonian obtained in the static replica approach
Refs. @7,8#. ~This rather general similarity between replic
and SUSY treatments has been discussed in Ref.@29#.! In-
stead of summation over replica indices in@7,8# we have
*d1. Our expressions are not identical to those in@7,8#, since
we use a quadratic well potential instead of two- and thr
body interaction terms to confine the polymer. Also, we u
a GaussianV(Dx) instead ofd(Dx).

IV. LONG-CHAIN APPROXIMATION

The S1 part of the action can be further simplified. It ca
be rewritten in the form

S152
B2

4
A(V)* A(d) ~19!

with the notation

A(V)* A(d)5E d1d2dxdyA1,2
(V)~x,y!A1,2

(d)~x,y!, ~20!

whereA(V) andA(d) are given by

A1,2
(V)~x,y!5E dsV„F~s,1!2x…V„F~s,2!2y…, ~21!

A1,2
(d)~x,y!5E ds8d„F~s8,1!2x…d„F~s8,2!2y…. ~22!

It is useful to transform exp(2S1) as

expFB2

4
A(V)* A(d)G5expFB2

16
@~A(V)1A(d)!* ~A(V)1A(d)!

2~A(V)2A(d)!* ~A(V)2A(d)!#G
5E DQ1DQ2 expFB2

4
@2~Q1* Q1

1Q2* Q2!1Q1* ~A(V)1A(d)!

1 iQ2* ~A(V)2A(d)!#G . ~23!

Then, the dynamical generating functionalF defined by

e2F5E DFe2S[F] 1J* F, ~24!

with J* F5*dsd1J(s,1)F(s,1), can be written as

e2F5E DQ1DQ2e2(B2/4)(Q1* Q11Q2* Q2)E DFeL[Q1 ,Q2 ,F] ,

~25!
0-3
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with L given by

L5
B2

4
@Q1* ~A(V)1A(d)!1 iQ2* ~A(V)2A(d)!#

2S0@F#1J* F. ~26!

So far everything was exact.A(V) andA(d) are both of order
N and for very long chains one can calculate integrals o
Q1 andQ2 in Eq. ~25! using a saddle point approximation
The saddle point equations read

Q1
s.p.5

1

2
^A(V)1A(d)&L8 , ~27!

Q2
s.p.5

i

2
^A(V)2A(d)&L8 , ~28!

where ^ &L8 denotes the average withL taking Q1 ,Q2

→Q1
s.p. ,Q2

s.p. . This leads to self-consistent equations f
Q1

s.p. andQ2
s.p. .

Thus, Eq.~25! can be approximated as

e2F'E DFe2S8[F] 1J* F, ~29!

with S8@F#5S18@F#1S0@F# and

S18@F#5
B2

4
@^A(V)&S8* ^A(d)&S82A(V)* ^A(d)&S8

2A(d)* ^A(V)&S8#. ~30!

^A(V)&S8 and ^A(d)&S8 have to be calculated self-consisten
with S8:

^A(V,d)&S85

E DFA(V,d)e2S81J* F

E DFe2S81J* F

. ~31!

In the limit N→` Eqs.~29!–~31! provide an exact descrip
tion of random heteropolymer dynamics.

V. VARIATIONAL ANSATZ

To solve the model we proceed by using a variatio
Ansatz, assuming that the fieldsF are approximately de
scribed by a Gaussian action

Svar5
1

2E d1dsd2ds8F~s,1!G~s,1;s8,2!21F~s8,2!.

~32!

This approach has been widely used in statics. Here we a
it to a dynamical calculation. The goal is to calculateF given
by Eq. ~29!. Since the variational parameterG(s,1;s8,2) is
the only quantity we are interested in, there is no need
keep the sourceJ. It is convenient to write Eq.~29!, with J
50, formally as
05191
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e2F5^e2(S82Svar)&vare
2Fvar, ~33!

where

e2Fvar5E DFe2Svar, ^ &var5eFvarE DF~ !e2Svar.

~34!

In the usual statics, for problems without disorder, the va
tional approach is related to a maximum principle. T
equivalent of Eq.~33! leads to the inequality

e2F>e2^(S82Svar)&vare2Fvar. ~35!

In the present dynamical problem, as well as in the sta
problem with replicas, unfortunately such a maximum pr
ciple is not known, and the variational free energy cannot
claimed to be an upper bound on the true one. Despite t
the variational approach has been argued to give exact re
in some limiting cases@23,24#, giving a justification for its
use in general.

The dynamical variational free energyFdyn5^(S8
2Svar)&var1Fvar is given by

Fdyn5Fdyn
(1) 1Fdyn

(2) 1Fdyn
(3) , ~36!

with

Fdyn
(1) 5

d

2E dsd1ds8d2K12
ss8G12

ss8 , ~37!

Fdyn
(2) 52

d

2
Tr ln G, ~38!

Fdyn
(3) 52

B2

4
^A(V)&var* ^A(d)&var . ~39!

Note that in calculatingFdyn
(3) the averagê &S8 in Eq. ~30! is

performed over the trial distribution@and therefore denoted
^ &var#.

VI. CALCULATING ŠA „V…

‹* ŠA „d…
‹

The term^A(V)&var* ^A(d)&var is the only nontrivial term in
Fdyn . Before calculating it we simplify each of the factors
the product further:

A1,2
(V,d)~x,y!'A1,2

(V,d)~u![1/vE ddRA1,2
(V,d)~u,R!, ~40!

wherev is the volume of the protein and a new coordina
system has been introduced:

R5~x1y!/2, u5~x2y!/2. ~41!

R is the center of mass andu a relative distance coordinate
Thus, translational invariance is introduced by hand via
~40!. This approximation is not necessary; the model co
be solved without it. However, as we shall see later on, t
0-4
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approximation leads to dynamical equations that are iden
to those for the random manifold model studied
@25,26,30#.

Changing integration variables fromddx ddy to ddR ddu
~the Jacobian is 2d) gives

E d1d2ddxddy^A1,2
(V)~x,y!&var^A1,2

(d)~x,y!&var

'
2d

v E d1d2dduE ddR8A1,2
(V)~u,R8!E ddR9A1,2

(d)~u,R9!.

~42!

The integrals overR8 and R9 can easily be performed an
one gets

2d

v E d1d2ddudsds8ddaddbV~a!V~b!

3^d@2u2a1b2F~s,1!1F~s,2!#&var

3^d@2u2F~s,1!1F~s,2!#&var , ~43!

which can be further written as

2d

v E d1d2ddudsds8ddaddbV~a!V~b!

3E ddp

~2p!d

ddq

~2p!d
ei (p1q)2ueip(b2a)e2p2B12

s /2e2q2B12
s8/2,

~44!

where averages overSvar have been evaluated as

^eip[F(s,1)2F(s,2)]&var5e2p2B12
s /2, ~45!

with B1,2
s given by

B1,2
s 5^@F~s,1!2F~s,2!#2&var

5G~s,1;s,1!1G~s,2;s,2!22G~s,1;s,2!. ~46!

Integrating Eq.~44! first overu and then overq andp finally
gives

1

v
~2p!2d/2E d1d2dsds8ddaddbV~a!V~b!~B12

s 1B12
s8!2d/2

3exp2
~a2b!2

2~B12
s 1B12

s8!
. ~47!

Equation~47! holds for anyV(Dx). However, technically, it
is of little use unless the integrals overa and b can be
performed explicitly. For the Gaussian form forV(Dx) @see
Eq. ~6!# it is possible to perform the integrals, and one ge

^A(V)&var* ^A(d)&var'
1

v
~4p!2d/2E d1d2dsds8

3@~B12
s 1B12

s8!/21s#2d/2 ~48!
05191
aland finally

Fdyn
(3) '

d

2NE d1d2dsds8V @~B12
s 1B12

s8!/2# ~49!

with

V~z!52
B̃2

d
~z1s!2d/2, B̃25

B2

2

N

v
~4p!2d/2. ~50!

Equations~36!–~39! and ~49! fully determineFdyn .

VII. EQUATIONS OF MOTION IN SUSY NOTATION

GivenFdyn , one can derive the equations of motion fro
the stationarity condition

d

dG12
ss8

Fdyn50. ~51!

The most complicated term is (d/dG12
ss8)Fdyn

(3) . From Eq.
~49!, it is

d

2NE d3d4dudvV 8@~B34
u 1B34

v !/2#

3dss8

dus1dvs

2
~d13d231d14d242d13d242d14d23!.

~52!

Due to translational invariance ins, B12
s is independent ofs.

After dropping the indexs Eq. ~52! simplifies to

d

dG12
ss8

Fdyn
(3) 5ddss8Fd12E d3V 8~B13!2V 8~B12!G . ~53!

The variations ofFdyn
(1) andFdyn

(2) are trivial. Using Eqs.~51!
and ~36! leads to

K12
ss82~G12

ss8!2112dss8Fd12E d3V~B13!2V~B12!G50,

~54!

which can be written as

K1
sG12

ss85d12dss812E d3V 8~B13!~G32
ss82G12

ss8!. ~55!

Due to translational invariance in the variables it is useful to
define the following Fourier transforms:

G12
ss8[E

2`

` dk

2p
eik(s2s8)G12

k . ~56!

Then Eq.~55! translates into

@T~m1k2!2D1
(2)#G12

k 5d1212E d3V8~B13!~G32
k 2G12

k !.

~57!
0-5
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Equation~57! is identical to the one obtained in Ref.@26# for
a D-dimensional manifoldw(v) (vPRD, wPRd) in a ran-
dom potentialV„w(v),v…, where the correlations of the po
tential are described by

^V~w,v!V~w8,v8!&52ddD~v2v8!V̂ @~w2w8!/d#.
~58!

These equations of motion were derived using the Gaus
variational approximation~GVA!, which is exact for the ran-
dom manifold problem ind5`. We expect the same beha
ior for the random heteropolymer. However, in this study
work at finited, so the equations of motion are approxima

There have been several studies of random manifo
where V̂ describes power law correlations as in Eq.~59!,
employing static@23,24,31# and dynamical@30,32,33# ap-
proaches:

V̂~z!5~z1s!12g/2~12g!. ~59!

By comparing Eqs.~50! and ~59! one notices thatV(z) is
identical to V̂(z) ~up to a proportionality factorB̃2) if one
identifiesg511d/2. Accordingly, we conclude that, within
the Gaussian variational approximation used in this stu
random heteropolymer dynamics is identical to the dynam
of the manifold in a random potential with power law corr
lations.~We cannot say anything rigorous outside the fram
work of the Gaussian variational approximation scheme
course.!

Furthermore, correlations of the random manifold pote
tial are classified as short range forg.2/(22D) and long
range forg,2/(22D) @23,24#. This classification of ran-
dom manifolds helps to classify random heteropolymer m
els in the same way. Usingg511d/2, the random het-
eropolymer hasD51, and short-range correlations ford
.2 and long-range correlations ford,2. ~Again, this all
makes sense only within the Gaussian variational approxi
tion.!

VIII. DISENTANGLING SUSY

G12
ss8 encodes 16 correlation functions, out of which on

two, the correlation and response functions, are indepen
and nonzero:

^^x~s,t1!x~s8,t2!&&[C~s,t1 ;s8,t2!

5E dk

2p
eik(s2s8)Ck~ t1 ,t2!, ~60!

^^x~s,t1!x̃~s8,t2!&&[R~s,t1 ;s8,t2!

5E dk

2p
eik(s2s8)Rk~ t1 ,t2!. ~61!

Also, by adding an external field term to the original Ham
tonianH@x#→H@x#1*dsdtx(s,t)h(s,t) one gets
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^^x~s,t1!x̃~s8,t2!&&5
d

dh~s8,t2!
^^x~s,t1!&&, ~62!

i.e., R(s,t1 ;s8,t2) describes the response to an infinitesim
field applied at timet2 and beads8. Thus,G12

k reduces to

G12
k 5Ck~ t1 ,t2!1~ ū12 ū2!@u1Rk~ t2 ,t1!2u2Rk~ t1 ,t2!#,

~63!

and, accordingly, with G11
ss5C(s,t1 ;s,t1), G22

ss

5C(s,t2 ;s,t2), and Eqs.~60!,~61!, one gets

B125B~ t1 ,t2!22~ ū12 ū2!@u1r ~ t2 ,t1!2u2r ~ t1 ,t2!#
~64!

with

B~ t1 ,t2!5E dk

2p
@Ck~ t1 ,t1!1Ck~ t2 ,t2!22Ck~ t1 ,t2!#

~65!

and

r ~ t1 ,t2!5E dk

2p
Rk~ t1 ,t2!. ~66!

After disentangling the equations of motion in SUSY no
tion @see Eq.~57!# using Eqs.~63!–~66! gives

@T~m1k2!1]/]t#Ck~ t,t8!

52TRk~ t8,t !12E
0

t

dsV8@B~ t,s!#Rk~ t8,s!

14E
0

t

dsV 9@B~ t,s!#r ~ t,s!@Ck~ t,t8!2Ck~s,t8!#,

~67!

@T~m1k2!1]/]t#Rk~ t,t8!

5d~ t2t8!14E
0

t

dsV 9@B~ t,s!#r ~ t,s!

3@Rk~ t,t8!2Rk~s,t8!#. ~68!

The equations of motion~67! and~68! are almost identical to
the ones found in Ref.@25# ~here D51, while in @25# D
50).

IX. ANSATZ FOR Ck„t,t8… AND Rk„t,t8…

These equations of motion are coupled integro-differen
equations which in principle can be solved; the initial con
tions are given byCk(0,0) and we use Ito’s conventionR(t
1e,t)→1 ase→0. It is well known that asymptotic solu
tions of such equations can be characterized by few par
eters and it is possible to solve those equations analytic
@25,26,30,34–36#.

For t,t8→`, t/t8!1, andt5t2t8, time-translational in-
variance~TTI! holds:
0-6
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lim
t→`

Ck~ t,t !5q̃k , ~69!

lim
t→`

Ck~ t1t,t !5Ck~t!, ~70!

lim
t→`

Ck~t!5qk , ~71!

and

lim
t→`

Rk~ t1t,t !5Rk~t!. ~72!

In addition to the TTI regime, there is another long-tim
nontrivial regime, characterized byt,t8→`, fixing l
5h(t8)/h(t) and 0,l,1, where the functionh(t) is an
increasing function oft, which the asymptotic analysis pe
formed here is not able to determine. In this aging regi
one has

lim
t→`

Ck„t,h
21@lh~ t !#…5qkĈk~l!, ~73!

lim
l→0

qkĈk~l!5q0,k , ~74!

lim
l→1

Ĉk~l!51, ~75!

and

lim
t→`

Rk~ t,lt !5
1

t
R̂k~l!. ~76!

Also, for future convenience, it is useful to introduce t
following order parameters:

q̃[ lim
t→`

^^x~s,t !x~s,t !&&5E dk

2p
q̃k , ~77!

q[ lim
t→`

lim
t→`

^^x~s,t1t!x~s,t !&&5E dk

2p
qk , ~78!

q0[ lim
l→0

lim
t→`

^^x~s,t !x~s,lt !&&5E dk

2p
q0,k , ~79!

together with

b52~ q̃2q!, b052~ q̃2q0!. ~80!

X. EQUATIONS RELATING ASYMPTOTIC VALUES
OF CORRELATION AND RESPONSE FUNCTIONS

Using theAnsatzdiscussed in Sec. IX one can derive t
following equations forCk(t,t8) in the TTI regime:
05191
e

@T~m1k2!1]/]t#Ck~t!

52TRk~2t!1
2

T
V8~b!@Ck~t!2qk#

2
2

TE0

t

dt8V8„B~t2t8!…
]Ck~t8!

]t8

12E
0

1

drV8„B̂~r!…R̂k~r!14E
0

1

drV 9„B̂~r!…r̂ ~r!

3@Ck~t!2qkĈk~r!#. ~81!

It is also possible to derive similar equations forRk(t)
which, due to the fluctuation-dissipation theorem~FDT!

Rk~t!52
1

T

dCk~t!

dt
, ~82!

are completely equivalent to Eq.~81!.
In the aging regime one gets the following equation

qkĈ(l):

FT~m1k2!24E
0

1

drV 9„B̂~r!…r̂ ~r!GqkĈk~l!

52E
0

1

drV 8„B̂~r!…R̂k~r!1
2

T
V 8„B̂~l!…~ q̃k2qk!

24E
0

l

drV 9„B̂~r!…r̂ ~r!qkĈk~r/l!

24E
l

1

drV 9„B̂~r!…r̂ ~r!qkĈk~l/r!. ~83!

For R̂k(l) we obtain

FT~m1k2!24E
0

1

drV 9„B̂~r!…r̂ ~r!GR̂k~l!

52
4

T
V 9„B̂~l!…r̂ ~l!~ q̃k2qk!

24E
l

1dr

r
V 9„B̂~r!…r̂ ~r!R̂k~l/r!. ~84!

Again, one can see that both Eq.~83! and Eq.~84! can be
solved by theAnsatz

R̂k~l!5
x

T
qk

dĈk~l!

dl
. ~85!

Equation~85! is commonly referred to as a generalized FD
~GFDT!. In principle, Eq.~85! could have been written as

R̂k~l!5
xk@qkĈk~l!#

T
qk

dĈk~l!

dl
, ~86!
0-7
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which could be applied to a many-step RSB scheme. H
ever, as previously discussed, the present random
eropolymer model can be identified with the random ma
fold problem with short-range potential correlations. A
such, it has one-step RSB, and it is sufficient to use
simpler ansatz given in Eq.~85!.

For t5t8 and t→` Eq. ~67! gives

T~m1k2!q̃k5T1
2

T
V 8~b!~ q̃k2qk!

12E
0

1

drV 8„B̂~r!…R̂k~r!

14E
0

1

drV 9„B̂~r!…r̂ ~r!@ q̃k2qkCk~r!#.

~87!

Equation~81! for t→` and thent→` results in

T~m1k2!qk5
2

T
V 8~b!~ q̃k2qk!12E

0

1

drV 8„B̂~r!…R̂k~r!

14E
0

1

drV 9„B̂~r!…r̂ ~r!qk@12Ck~r!#.

~88!

Also, Eq. ~83! for l→0 gives

T~m1k2!q0,k52V 8~b0!E
0

1

drR̂k~r!1
2

T
V 8~b0!~ q̃k2qk!.

~89!

Equations~87!, ~88!, and ~89! @and, equivalently, Eqs
~81!, ~83!, and ~84! contain TTI and aging parts. Thus, i
principle, there are twoAnsätze for solving them, leading to
two phases: an ergodic one~without aging! and a glassy one
~with aging!.

XI. ERGODIC PHASE

Technically, assuming that aging is absent amounts to
ting R̂k(l)50 and Ĉk(l)51 in Eqs. ~87!, ~88!, and ~89!.
@Equivalently, one could start from Eqs.~67! and ~68! and
exclude the aging part from the beginning, leading to
same equations.# Thus, in the ergodic phase, Eqs.~87!, ~88!,
and ~89! reduce to

T~m1k2!q̃k5T1
2

T
V 8~b!~ q̃k2qk!, ~90!

T~m1k2!qk5
2

T
V 8~b!~ q̃k2qk!, ~91!

T~m1k2!q0,k5
2

T
V 8~b0!~ q̃k2qk!. ~92!
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Note that Eqs.~91! and ~92! enforceqk5q0,k which is just
equivalent toĈk(l)51, so one gets only two equation
Solving them forq̃k andqk gives

q̃k2qk5
1

m1k2
, ~93!

q̃k5
1

m1k2
1

2

T2
V 8~b!

1

~m1k2!2
. ~94!

After integrating overk and using

E dk

2p

1

m1k2
5

1

2Am
, E dk

2p

1

~m1k2!2
5

1

4m3/2
,

~95!

we obtain

q5
1

2m3/2T2
V 8~1/Am!, ~96!

q̃5
1

2Am
1

1

2m3/2T2
V 8~1/Am!. ~97!

For T very small,q and q̃ blow up since the confinemen
term mx(s,t)2 becomes ineffective@see Eq.~7!#. For very
large temperatureq approaches zero but is never exac
equal to zero.

XII. SPIN GLASS PHASE

Keeping the aging parts and using the GFDT, Eqs.~87!,
~88!, and~89! can be transformed into

T~m1k2!q̃k5T1
2

T
V 8~b!~12x!~ q̃k2qk!

1
2

T
V 8~b0!x~ q̃k2q0,k!, ~98!

T~m1k2!qk5
2

T
@V 8~b!2xV 8~b0!#~ q̃k2qk!

1
2

T
V 8~b0!x~ q̃k2q0,k!, ~99!

T~m1k2!q0,k5
2

T
V 8~b0!~12x!~ q̃k2qk!

1
2

T
V 8~b0!x~ q̃k2q0,k!. ~100!

Solving Eqs.~98!, ~99!, and~100! for q̃k , qk , andq0,k gives

q̃k2qk5
1

m1k21S
, ~101!
0-8
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q̃k2q0,k5
1

x

1

m1k2
2

12x

x

1

m1k21S
, ~102!

q̃k5~ q̃k2q0,k!1
2

T2
V 8~b0!

1

~m1k2!2
, ~103!

where

S5x
2

T2
@V 8~b!2V 8~b0!#. ~104!

Integration overk and using Eq.~95! gives

b5
1

Am1S
, ~105!

b05
1

x

1

Am
2

12x

x

1

Am1S
, ~106!

q̃5b01
1

2m3/2T2
V 8~b0!. ~107!

Furthermore, Eq.~84! with l51 gives

R̂k~1!~m1k21S!52~ q̃k2qk!
4V 9~b!

T2
r̂ ~1!, ~108!

and, after using Eq.~101!, integrating overk, and usingm
1S5b22 @see Eq.~105!#, one gets

05 r̂ ~1!@T21b3V 9~b!#. ~109!

Equation~109! with r̂ (1)Þ0 implies the marginal stability
condition

2T25b3V 9~b!. ~110!

Also, Eqs.~105! and ~106! can be rewritten as

V 8~b!2V 8~b0!

b02b
5

T2

2

Am

b S 1

b
1Am D , ~111!

b02b5
1

x S 1

Am
2bD . ~112!

Equations~110!, ~111!, and ~112! fully solve the model:
~110! givesb as function ofT, ~111! determinesb0 as func-
tion of T and m, ~112! determinesx(T,m), and Eq.~107!
gives q̃(T,m). Knowing b(T), b0(T,m), andq̃(T,m) deter-
minesq(T,m) andq0(T,m). Were we to impose the spher
cal constraintq̃5const, Eq.~107! could be used to relatem
andT, and all order parameters could be expressed as f
tions of T only (q̃ being fixed!. However, in this study we
work with fixed T andm, allowing q̃ to change.
05191
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XIII. SOLVING THE EQUATIONS „PHASE DIAGRAM …

The procedure of solving equations similar to the on
given in Eqs.~110!, ~111!, and ~112! has been discussed i
Ref. @25#. We apply a similar analysis to the random he
eropolymer problem. In principle, there are three critic
lines in theT,m plane separating different phases~as shown
in Fig. 1!.

Critical line 1. T5Tmax is the uppermost critical line@de-
noted in Fig. 1 by~1!#; above this line Eq.~110! has no
solution. The value ofTmax can be determined from th
graphical solution of Eq.~110! depicted in Fig. 2. OnceT has
been chosen~horizontal line labeledT/Tmax! b is found from
the intercept of theT/Tmax line with the 2b3V 9(b)/Tmax

2

curve. From Fig. 2 it is clear that atb5bmax the right hand
side of Eq. ~110! reaches a maximum; requiring (d/db)
3@b3V 9(b)#50 gives 3V 9(b)1bV-(b)50 and bmax

53s/(g22). Accordingly,Tmax5@2bmax
3 V 9(bmax)#1/2.

Also, note that for fixedT Eq. ~110! has two solutions for
b ~denoted by I and II in Fig. 2!; a first, physical solution
(bI→0 for T→0) in the interval@0,bmax# and a second,
unphysical solution (bII →` for T→0) in the interval
@bmax,`). Accordingly, a model withs50 @i.e., V(Dx)
5d(Dx)# leads to an unphysical phase diagram, since
s→0 the physical branch@0,bmax# disappears (bmax→0).

FIG. 1. Phase diagram of dynamic random heteropolymer mo
in m,T plane. Critical lines are denoted by~1! T5Tmax; ~2! b
5b05m21/2 (x ranges from 1 to 0!; ~3! x51, b05m21/2.b. Be-
low lines 2 and 3 lies the glassy phase and above the ergodic ph

FIG. 2. Graphical solution of Eq.~110!. The equation has two
solutions forT,Tmax denoted by I and II. ForT5Tmax there is
only one solutionb5bbmax. Solution I is physical and solution II is
unphysical.
0-9
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Clearly, the form ofV(b) for small b has to be modeled
carefully and the choiceV(Dx)5d(Dx) simply fails in that
respect, givingV(0)5`. Thus, when formulating the prob
lem, if there is to be a possibility of freezing at low temper
tures (b→0 asT→0), the bead-bead interactionV(Dx) has
to be regular for smallDx. A similar small-distance regular
ization problem of the bead-bead interaction was enco
tered in Ref.@21#.

Critical line 2. This corresponds tob5b0. From Eq.
~112! it follows thatb5b051/Am. The equation of the criti-
cal line is obtained by insertingb51/Am into Eq. ~110!:

~T/B̃!25
g

2
m23/2~m21/21s!2(g11). ~113!

mP@mmax,`), where mmax solves Eq. ~113! with T
5Tmax.

The value ofxc at the critical line cannot be directly ob
tained from Eq.~112!. Instead, one has to approach the cr
cal line and obtain the limiting value ofx: for example, first
one assumes that the point (Tc ,mc! is at the critical line@Tc
andmc satisfy Eq.~113!# and thenT(e), m(e), b(e), b0(e),
andx(e) approach their values at the critical line fore→0.
Naturally, the dependence one has to be chosen consistent
with Eqs. ~110!, ~111!, and ~112!. Since one has five vari
ables and three equations that relate them, two variables
to be specified as, e.g.,b0(e)5bc1e, with bc51/Amc and
T(e)5Tc . The other three variablesb(e), m(e), andx(e)
have to be determined from Eqs.~110!, ~111!, and~112!:

V 8~bc!2V 8~bc1e!

e
5

Tc
2

2

Am~e!

bc
S 1

bc
1Am~e! D , ~114!

e5
1

x~e! S 1

Am~e!
2bcD . ~115!

Equation ~110! is trivially satisfied and does not enter th
analysis. At first order ine Eqs.~115! and ~114! give

x~0!52
1

2mc
3/2

m8~0!, m8~0!52
2

3

V-~bc!

Tc
2Amc

,

~116!

which, together withTc
252mc

23/2V 9(bc), gives the value for
x at the critical line 2,

xc52
1

3

V-~bc!

V 9~bc!
. ~117!

Using the explicit form forV gives

xc5
g11

3

bc

bc1s
~118!

with bc on the critical line.bc5bmax givesxc51 while for
bc50 one getsxc50.

Thus, at the critical line 2, close toTmax, xc is very close
to 1 and asT(m) decreases~increases! xc drops to zero.
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Also, at the critical line 2, the transition to the ergodic pha
is continuous inb andb0 and discontinuous inx.

Critical line 3. At this line x51 and Eq.~112! gives b0

51/Am.b. The equation for this critical line is given by

V 8~b!2V 8~1/Am!

1/Am2b
5

T2

2

Am

b S 1

b
1Am D . ~119!

OnceT is chosen,b is determined from Eq.~110! and upon
solving Eq.~119! one obtainsm as a function ofT. Critical
line 3 is depicted in Fig. 1, where it was obtained by solvi
Eq. ~119! numerically. The line starts from (mmax,Tmax) and
then drops to (0,T* ) whereT* is given from Eq.~110! with
b5b* andb* 52s/(g22). Thus, asb→b* , b0→`, as can
easily be checked by inserting those assumptions in
~119!. Also, b0→b asm→mmax. Thus, unlike line 2, on line
3 the transition to the ergodic phase is discontinuous inb and
b0 but continuous inx.

Also, for arbitrary m, when T gets close to zerob ap-
proaches 0 andb0 grows to infinity. This simply means tha
for low temperatures the heteropolymer freezes complet
x(s,t1t)5x(s,t) for arbitraryt andt sufficiently large. On
the other hand, for fixedT and vanishingm, Eq. ~111! gives
b0→`, while b stays fixed by Eq.~110!.

For smallm Eqs.~96! and~97! give q/q̃}m (d22)/4. Thus,
for m50 one getsq/q̃50. Also, as discussed at the end
the preceding paragraph, in the glass phase form→0 one has
b0→` andb5const, which givesq/q̃51. Thus in contrast
to the ergodic phase, where vanishingm leads to paramag
neticlike behavior, in the glass phase the system gets trap
in one of many states separated by diverging barriers. In
estingly enough, adjustingm so that the radius of gyrationRg

scales according toRg
d;N and using the relationRg

2

;1/Am ~which is exact for the Gaussian coil! @16# givesm

}N24/d and q/q̃}N2(d22)/d. Thus, in the thermodynamic
limit q/q̃→0.

XIV. DISCUSSION

We have presented a detailed derivation of the equat
of motion of a random heteropolymer using SUSY form
ism and a Gaussian variationalAnsatz. In deriving these
equations, we have used a long-chain approximation, con
erably simplifying the dynamical action. Furthermore, by im
posing translational invariance, we have shown that, as h
pens in statics, within the Gaussian variationalAnsatzthe
equations of motion become identical to those for a manif
in a random potential with power law correlations.

Clearly, this result is closely related to the particul
variationalAnsatzemployed here, and its generality beyon
this framework remains an open question. Nevertheless,
existence of this mapping at the level of the GVA is rath
intriguing. It connects the random heteropolymer model w
many physical systems, such as a manifold pinned by im
rities, interfaces in a random field, the glassy phase of vo
ces in high-Tc superconductors, directed polymers in a ra
dom potential, and surface growth on disordered substra
It would be interesting to understand to what extent the m
0-10
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pings to these problems extends beyond the GVA.
By making the standard 1RSB agingAnsatzfor response

and correlation functions we found the asymptotic solut
of the dynamical equation. The validity of thisAnsatzhas
been carefully checked elsewhere: in the context of the
dom manifold problem it was shown that the one-step rep
symmetry breakingAnsatzcan be used to describe a rando
manifold with short-range correlations, and we have app
this result to the random heteropolymer.

The analytic solutions show that, as expected, the rand
heteropolymer has characteristic properties of spin glass
tems: aging and ergodicity breaking. Furthermore, the
namical phase diagram is different from that for statics.
dynamics starting from a random condition, the polymer
stuck at energies higher than the ones of the native stat

In a more realistic approach to heteropolymers, we exp
that finite-dimensional, and finite-length chain effects will
responsible for ultimate restoration of ergodicity. Our stu
should be taken as an indication of a time regime where
trapping effect and aging could be observed.
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One of the motivations for this paper, mentioned at t
beginning of the Introduction, was the hope that it mig
provide some insight into the dynamics of proteins, includi
their folding. However, it is fairly well understood by now
that protein dynamics are influenced strongly by the ex
tence of an energetically favored native state, a feature
sent from the random heteropolymer model we have stud
here. In work currently in progress, we are extending
analysis presented here to models in which the two-b
interactionsBs,s8 are systematically biased, with a tunab
strength, to favor particular ‘‘native’’ states. Such mode
provide an opportunity to study the competition between
attraction to a native state and the glassiness produced b
randomness and frustration.~References@37–40# treat equi-
librium aspects of this competition.!
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